This solution is used within the U.S.. It combines standards associated with US: SAE Weather Info with those for I–M: Secure Wireless Internet (ITS). The US: SAE Weather Info standards include upper–layer standards required to implement V2X weather information flows. The I–M: Secure Wireless Internet (ITS) standards include lower–layer standards that support secure communications between two entities, either or both of which may be mobile devices, but they must be stationary or only moving within wireless range of a single wireless access point (e.g., a parked car). Security is based on X.509 or IEEE 1609.2 certificates. A non–mobile (if any) endpoint may connect to the service provider using any Internet connection method.
Level | DocNum | FullName | Description |
---|
Mgmt | IETF RFC 3411 | An Architecture for Describing Simple Network Management Protocol (SNMP) Management Frameworks | This standard (RFC) defines the basic architecture for SNMPv3 and includes the definition of information objects for managing the SNMP entity's architecture. |
---|
Mgmt | IETF RFC 3412 | Message Processing and Dispatching for the Simple Network Management Protocol (SNMP) | This standard (RFC) contains a MIB that assists in managing the message processing and dispatching subsystem of an SNMP entity. |
---|
Mgmt | IETF RFC 3413 | Simple Network Management Protocol (SNMP) Applications | This standard (RFC) includes MIBs that allow for the configuration and management of remote Targets, Notifications, and Proxys. |
---|
Mgmt | IETF RFC 3414 | User–based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3) | This standard (RFC) contains a MIB that assists in configuring and managing the user–based security model. |
---|
Mgmt | IETF RFC 3415 | View–based Access Control Model (VACM) for the Simple Network Management Protocol (SNMP) | This standard (RFC) contains a MIB that supports the configuration and management of the View–based access control model of SNMP. |
---|
Mgmt | IETF RFC 3416 | Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP) | This standard (RFC) defines the message structure and protocol operations used by SNMPv3. |
---|
Mgmt | IETF RFC 3418 | Management Information Base (MIB) for the Simple Network Management Protocol (SNMP) | This standard (RFC) defines the MIB to configure and manage an SNMP entity. |
---|
Mgmt | IETF RFC 4293 | Management Information Base for the Internet Protocol (IP) | This standard (RFC) defines the MIB that manages an IP entity. |
---|
Security | IETF RFC 5280 | Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile | This standard (RFC) defines how to use X.509 certificates for secure communications over the Internet. |
---|
Security | IETF RFC 8446 | The Transport Layer Security (TLS) Protocol | This standard (RFC) specifies Version 1.3 of the Transport Layer Security (TLS) protocol. The TLS protocol provides communications security over the Internet. The protocol allows client/server applications to communicate in a way that is designed to prevent eavesdropping, tampering, or message forgery. |
---|
ITS Application Entity | SAE J2735 | Dedicated Short Range Communications (DSRC) Message Set Dictionary (TM) | This standard defines the data and messages for use in DSRC (i.e., V2V, V2I, and V2D) applications. The SAE J2945 series defines additional requirements on how to use these messages. |
---|
ITS Application Entity | SAE J2945/1 | On–Board System Requirements for V2V Safety Communications | This standard specifies the system requirements for an on–board vehicle–to–vehicle (V2V) safety communications system for light vehicles, including standards profiles, functional requirements, and performance requirements. |
---|
ITS Application Entity | SAE J2945/3 | Requirements for V2I Weather Applications | This document specifies interface requirements between vehicles and infrastructure for weather applications, including detailed systems engineering documentation (needs and requirements mapped to appropriate message exchanges). The purpose of this SAE Standard is to enable interoperability supporting these weather applications over a communications technology agnostic interface. |
---|
Facilities | SAE J2945 | Dedicated Short Range Communication (DSRC) Systems Engineering Process Guidance for J2945/x Documents and Common Design Concepts | This standard defines cross–cutting material which applies to the J2945/x series including generic DSRC interface requirements and guidance on Systems Engineering (SE) content. |
---|
TransNet | IETF RFC 2460 | Internet Protocol, Version 6 (IPv6) Specification | This standard (RFC) specifies version 6 of the Internet Protocol (IPv6), also sometimes referred to as IP Next Generation or IPng. |
---|
TransNet | IETF RFC 4291 | IP Version 6 Addressing Architecture | This standard (RFC) defines the addressing architecture of the IP Version 6 (IPv6) protocol. It includes the IPv6 addressing model, text representations of IPv6 addresses, definition of IPv6 unicast addresses, anycast addresses, and multicast addresses, and an IPv6 node's required addresses. |
---|
TransNet | IETF RFC 4443 | Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification | This standard (RFC) defines the control messages to manage IPv6. |
---|
TransNet | IETF RFC 793 | Transmission Control Protocol | This standard (RFC) defines the main connection–oriented Transport Layer protocol used on Internet–based networks. |
---|
Access | 3GPP Network | 3GPP Cellular Communications Network | This proxy standard represents a variety of 3GPP releases and underlying standards and technologies that rely upon cellular base stations for connectivity, including 3G, 4G, and the emerging 5G technologies. |
---|
A small number of minor issues. For existing deployments, consider addressing issues as needed as part of maintenance or upgrade activities. For new deployments, the solution is likely suitable for wide–scale deployment when applied to the triples it supports, though the noted issues should be considered and a path to addressing them developed, if needed, either as part of design or subsequent maintenance or upgrade activities.