This solution is used within the U.S.. It combines standards associated with US: SAE Platooning with those for V–X: WAVE WSMP. The US: SAE Platooning standards include upper–layer standards required to manage platooning and cooperative adaptive cruise control. The V–X: WAVE WSMP standards include lower–layer standards that support connectionless, near constant, ultra–low latency vehicle–to–any communications within ~300m using the WAVE Short Messaging Protocol (WSMP) over IEEE WAVE in the 5.9GHz spectrum. The broadcast mode is interoperable with M5 FNTP.
Level | DocNum | FullName | Description |
---|
Mgmt | Addressed Elsewhere | Addressed Elsewhere in Stack | The services related to this portion of the stack are defined in the other standards listed for this solution. |
---|
Security | IEEE 1609.2 | IEEE Standard for Wireless Access in Vehicular Environments – Security Services for Applications and Management Messages | This standard defines secure message formats and processing for use by Wireless Access in Vehicular Environments (WAVE) devices, including methods to secure WAVE management messages and methods to secure application messages. It also describes administrative functions necessary to support the core security functions. |
---|
Security | IEEE 1609.2a | IEEE 1609.2a–2017 – IEEE Standard for Wireless Access in Vehicular Environments––Security Services for Applications and Management Messages – Amendment 1 | This standard defines secure message formats and processing for use by Wireless Access in Vehicular Environments (WAVE) devices, including methods to secure WAVE management messages and methods to secure application messages. It also describes administrative functions necessary to support the core security functions. |
---|
Security | IEEE 1609.2b | IEEE Standard for Wireless Access in Vehicular Environments––Security Services for Applications and Management Messages – Amendment 2––PDU Functional Types and Encryption Key Management | This standard defines secure message formats and processing for use by Wireless Access in Vehicular Environments (WAVE) devices, including methods to secure WAVE management messages and methods to secure application messages. It also describes administrative functions necessary to support the core security functions. |
---|
ITS Application Entity | SAE J2735 | Dedicated Short Range Communications (DSRC) Message Set Dictionary (TM) | This standard defines the data and messages for use in DSRC (i.e., V2V, V2I, and V2D) applications. The SAE J2945 series defines additional requirements on how to use these messages. |
---|
ITS Application Entity | SAE J2945/6 | Performance Requirements for Cooperative Adaptive Cruise Control and Platooning | This document specifies the system requirements for the Cooperative Adaptive Cruise Control (CACC) and Platooning applications. |
---|
Facilities | SAE J2735 | Dedicated Short Range Communications (DSRC) Message Set Dictionary (TM) | This standard defines the data and messages for use in DSRC (i.e., V2V, V2I, and V2D) applications. The SAE J2945 series defines additional requirements on how to use these messages. |
---|
Facilities | SAE J2945 | Dedicated Short Range Communication (DSRC) Systems Engineering Process Guidance for J2945/x Documents and Common Design Concepts | This standard defines cross–cutting material which applies to the J2945/x series including generic DSRC interface requirements and guidance on Systems Engineering (SE) content. |
---|
TransNet | IEEE 1609.3 | IEEE Standard for Wireless Access in Vehicular Environments (WAVE) – Networking Services | This standard defines the network and transport layer options for the WAVE environment. The standard defines three options: a bandwidth efficient single–hop solution known as WSMP, UDP/IP, and TCP/IP. It has been harmonized with ISO FNTP and FSAP – a common message format specified in ISO 16460. |
---|
Access | IEEE 1609.4 | IEEE Draft Standard for Wireless Access in Vehicular Environments – Multi–Channel Operation | This standard primarily defines the data link layer of the WAVE communications stack. |
---|
Access | IEEE 802.11 | IEEE Draft Standard for Information technology––Telecommunications and information exchange between systems Local and metropolitan area networks––Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specificatio | This standard defines the physical and data link layers for wireless Ethernet, including WiFi and DSRC. |
---|
Access | ISO/IEC 8802–2 | IEEE Standard for Information technology –– Telecommunications and information exchange between systems––Local and metropolitan area networks –– Specific requirements –– Part 2: Logical Link Control | ISO/IEC 8802–2 describes the logical link control (LLC) sublayer, which constitutes the top sublayer in the data link layer of the ISO 8802 Local Area Network Protocol (also known as IEEE 802.2). |
---|
Multiple significant and minor issues. For existing deployments, the chosen solution is likely deficient in security or management capabilities, and the issues should be reviewed and upgrades developed as needed. Some solutions in this category may also be becoming obsolete from an interoperability perspective and if this is the case, then upgrades should be planned as soon as possible. For new deployments, the solution may be viable for pilots when applied to the triples it supports; such pilot deployments should consider a path to addressing these issues as a part of their design activities. The solution does not provide sufficient interoperability, management, and security to enable proper, full–scale deployment without additional work.
Source | Destination | Flow |
---|
Commercial Vehicles | Connected/Automated Vehicles | vehicle cluster coordination |
---|
Connected/Automated Vehicles | Commercial Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Akron Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Barberton Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Cuyahoga Falls Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Green Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Hudson Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Kent Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Stow Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | City of Twinsburg Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | OSHP Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | Other Municipalities Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | Portage County Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | Summit County Emergency Vehicles | vehicle cluster coordination |
---|
ODOT Connected Vehicles Roadside Equipment | University of Akron Roo Express Shuttle Service Vehicles | cooperative adaptive cruise control parameters |
---|
ODOT Connected Vehicles Roadside Equipment | University of Akron Roo Express Shuttle Service Vehicles | vehicle cluster coordination |
---|
OSHP Vehicles | ODOT Connected Vehicles Roadside Equipment | cooperative adaptive cruise control status |
---|
University of Akron Roo Express Shuttle Service Vehicles | ODOT Connected Vehicles Roadside Equipment | cooperative adaptive cruise control status |
---|